iPCA: An Interactive System for PCA-based Visual Analytics
ثبت نشده
چکیده
Principle Component Analysis (PCA) is a widely used mathematical technique in many fields for factor and trend analysis, dimension reduction, etc. However, it is often considered to be a “black box” operation whose results are difficult to interpret and sometimes counter-intuitive to the user. In order to assist the user in better understanding and utilizing PCA, we have developed a system that visualizes the results of principal component analysis using multiple coordinated views and a rich set of user interactions. Our design philosophy is to support analysis of multivariate datasets through extensive interaction with the PCA output. To demonstrate the usefulness of our system, we performed a comparative user study with a known commercial system, SAS/INSIGHT’s Interactive Data Analysis. Participants in our study solved a number of high-level analysis tasks with each interface and rated the systems on ease of learning and usefulness. Based on the participants’ accuracy, speed, and qualitative feedback, we observe that our system helps users to better understand relationships between the data and the calculated eigenspace, which allows the participants to more accurately analyze the data. User feedback suggests that the interactivity and transparency of our system are the key strengths of our approach.
منابع مشابه
Designing a PCA-based Collaborative Visual Analytics System
In visual analytics, collaboration is viewed as a knowledge sharing process that helps people perform analytical reasoning tasks effectively. In this paper, we present a collaborative visual analytics tool, iPCA-CE, that supports interactive data analysis using principal component analysis (PCA) on a tabletop display. We define three data analysis scenarios that are addressed when designing the...
متن کاملiPCA: An Interactive System for PCA-based Visual Analytics
Principle Component Analysis (PCA) is a widely used mathematical technique in many fields for factor and trend analysis, dimension reduction, etc. However, it is often considered to be a “black box” operation whose results are difficult to interpret and sometimes counter-intuitive to the user. In order to assist the user in better understanding and utilizing PCA, we have developed a system that...
متن کاملiPCA: An Interactive System for PCA-based Visual Analytics
Principle Component Analysis (PCA) is a widely used mathematical technique in many fields for factor and trend analysis, dimension reduction, etc. However, it is often considered to be a “black box” operation whose results are difficult to interpret and sometimes counter-intuitive to the user. In order to assist the user in better understanding and utilizing PCA, we have developed a system that...
متن کاملUnderstanding Principal Component Analysis Using a Visual Analytics Tool
Principle Component Analysis (PCA) is a mathematical procedure widely used in exploratory data analysis, signal processing, etc. However, it is often considered a black box operation whose results and procedures are difficult to understand. The goal of this paper is to provide a detailed explanation of PCA based on a designed visual analytics tool that visualizes the results of principal compon...
متن کاملEvolutionary Eigenspace Learning using CCIPCA and IPCA for Face Recognition
Traditional principal components analysis (PCA) techniques for face recognition are based on batch-mode training using a pre-available image set. Real world applications require that the training set be dynamic of evolving nature where within the framework of continuous learning, new training images are continuously added to the original set; this would trigger a costly continuous re-computatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009